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Abstract

Deep Neural Networks (DNNs) have attained state-of-
the-art performances on most computer vision problems in
today’s world. They have beaten a lot of traditional ma-
chine learning approaches at tasks and continue to surpass
their own levels as the hardware acceleration for learning
keeps getting better. However, despite their scalability and
efficiency, most of the DNNs deployed for computer vision
tasks are vulnerable to adversarial attacks. Since it was
first discovered back in 2014, there has been a lot of work in
this domain of generating attacks to fool these DNNs. This
project aims to implement, compare and analyze the effects
of popular adversarial attacks on DNNs that are used for
the image classification task. It will also use the common
visualization technique - GradCAM to visualize where the
different neurons in the pre-final layer of these DNNs ’look
at’ before predicting the class.

1. Introduction
Over the last decade, researchers have made tremendous

strides using Deep Neural Networks (DNNs), an array of
algorithms and architectures have been designed to solve
important problems when it comes to image and text data.
However, these deep learning models are vulnerable to ad-
versarial attacks applied to input data. Such adversarial at-
tacks manipulate the data in a way that leads to models in-
correctly classifying the data during evaluation.

Adversarial attacks can be categorized into white-box
and black-box attacks on the basis of the level of accessi-
bility that the attacker has to the model and its predictions.
In the case of white-box attacks, the attacker has access to
the model architecture and model parameters, while in the
case of black-box attacks, the attacker has access to the pre-

dictions made by the model but does not have access to the
model itself. Figure 1 shows this classification.

Attacks can be categorized into poisoning attacks and
evasion attacks on the basis of when they were launched.
In poisoning attacks, the training data or its labels are tam-
pered with. This may be implemented when the model is
being trained for the first time or when the model has been
deployed but needs to be re-trained with new data. Eva-
sion attacks are implemented when the model has been de-
ployed. In this, the input data is maliciously modified to
fool the model which has been trained.

In some cases, the perturbations made by adversarial at-
tacks in images are so subtle that they cannot be noticed
by a human, yet the DNN classifier fails to correctly clas-
sify the image. Figure 2 shows such an example. The ad-
versarial image is not distinguishable from the original, but
the model is unable to identify the image correctly. Adver-
sarial attacks pose a threat to security because they could
be used by unauthorised personnel to attack deep learning
models[7] [1]. This is a matter of concern in safety-critical
applications such as healthcare, autonomous vehicles, flight
control and so on.

In this project, we have studied adversarial attacks such
as the Fast Gradient Sign Method (FGSM)[12] [5] attack,
the Basic Iterative Method (BIM) [3] attack, and the Deep-
Fool attack[9]. These attacks fall into the white-box and
evasion attack categories. We study the effect of the at-
tacks on Deep Neural Networks trained to classify images
on the MNIST and CIFAR-10 datasets. Furthermore, we
have trained models on the CIFAR-10 dataset and studied
the transferability of adversarial attacks by using examples
generated for one model for evaluation by another. Lastly,
we use Grad-CAM[10], a visualisation technique that al-
lows us to see where a deep learning model focuses on in an
image during evaluation. For visualisations, we make use of
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models trained on the ImageNet dataset and the FGSM at-
tack. We use the ImageNet dataset[2] for visualisations be-
cause MNIST[8] and CIFAR-10[6] contain low-resolution
images which do not allow for intelligible differences when
we use Grad-CAM.

In this paper, Section 2 talks about the methodology in
which, 2.1 contains details about the datasets that were used
and how they were used. 2.2 to 2.4 elaborates on each
of the adversarial attacks that were used in this work. 2.5
talks about the Grad-CAM technique which has been used
to visualize the pre-final layer neurons. That is followed by
Section 3 which contains all the details of experiments con-
ducted and the corresponding results. Section 4 concludes
this work and is followed by References.

Figure 1. Classification on Accessibility

Figure 2. Adversarial Example

2. Methodology
In this section, we will be discussing the datasets used

in this project as well as the approaches undertaken for the
generation of adversarial images.

2.1. Datasets used for the experiments

• CIFAR-10 - This dataset has 60000 images of size
32x32x3, each image belonging to one of 10 classes.
The classes include birds, airplanes, ships, trucks, dogs
etc. The CIFAR-10 dataset has low-resolution images
which allow fast and easy training for testing a neu-
ral network algorithm. CIFAR-10 is one of the most
commonly used benchmark datasets when it comes to
computer vision and deep learning research.

• MNIST - This dataset has 60000 training images and
10000 test images of handwritten digits from 0-9. Sev-
eral researchers have used the MNIST dataset and
achieved human-like performance using CNNs and
other Deep Learning architectures. The creators of the
database had used Support Vector Machines for their
original paper and achieved an error rate of just 0.8%.

• ImageNet (Subset) - ImageNet is a widely-used open
source dataset consisting of more than 14 million im-
ages organized into more than 20000 different classes.
While it is extensively used in image processing and
image classification applications, we use a subset of
the ImageNet for our experiments. We tested our at-
tack models and obtained results on images from 10
classes.

2.2. FGSM (Fast Gradient Sign Method) Attack

Fast Gradient Sign Method (FGSM) is a very effective
untargeted attack method to generate adversarial images to
attack datasets. It uses the gradients of a loss function and
then messes with its sign in such a way that it maximizes
the loss instead of minimizing it. Thus it creates an image
that a human eye may perceive to be identical, but forces the
neural network into making a wrong prediction. This new
image can be called an adversarial image. The following
expression can be used to summarize the FGSM attack:

adv−x = x+ ϵ ∗ sign (∇xJ(θ, x, y))

where,

• adv x : Adversarial image.

• x : Original input image.

• y : The ground-truth input label.

• ϵ : The tiny value multiplied with the gradient to ensure
smaller perturbation such that the human eye cannot
detect it.

• θ : DNN parameters.

• J : Loss function.

Essentially, the FGSM attack consists of 3 steps in the fol-
lowing order:

• Evaluate the forward propagation loss.

• Evaluate the gradient wrt the image pixels.

• Image pixels are nudged lightly in the direction of the
evaluated gradients which maximize the loss.

Figure 3 explains the concept in a simpler fashion. In the
figure, the equation on the left is the usual training update
rule, whereas FGSM uses the equation mentioned on the
right.
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Figure 3. Working of FGSM

2.3. BIM (Basic Iterative Method)

Basic Iterative Method (BIM) [3] is an extension of the
previously discussed FGSM attack. The idea is to do FGSM
iteratively while clipping the output of the perturbation as it
steps so that the generated adversarial image still remains
within both, the ϵ neighbourhood as well as the input space.
Few papers sometimes also call BIM the Iterative FGSM
(I-FGSM). This attack allows you more control over the at-
tack. The following update rule can be used to summarize
the BIM attack:

Xadv
0 = X

Xadv
N+1 = ClipX,ϵ

{
Xadv

N + α sign
(
∇XJ

(
Xadv

N , ytrue

))}
where,

• Xadv
N : Adversarial image at the ith iteration.

• X : Original input image.
• ytrue : The ground-truth input label.
• ϵ : Tunable parameter.
• α : Step size.
• J : Loss function.

2.4. DeepFool Adversarial Attack

DeepFool is an attack used on classifier models. It itera-
tively perturbs the image until the attacked image is wrongly
classified by the model. The perturbations across the image
are then summed up and added to the original image to gen-
erate an attacked image.

Figure 4. Example of DeepFool on a Linear Classifier

For example, as shown in Figure 4, if an image x 0 is
classified correctly into its respective class, the DeepFool
model finds the nearest hyper-plane (f(x) < 0) and per-
turbs the image to move in the direction of it. The itera-
tive process takes place till the image just about reaches the
other side of the hyper-plane, thus inducing misclassifica-
tion. The DeepFool algorithm can be written as shown in
Algorithm 1.

Algorithm 1: DeepFool Algorithm
Input: Input Image x and its nearest classifier f
Output: Perturbations r̂

1 x0 ← x , i← 0
2 while sign (f(xi)) = sign (f(x0)) do
3 ri ← −f(xi)

∥∇f(xi)∥2
2

4 xi+1 ← xi + ri
5 i← i+ 1

6 return r̂ =
∑

i ri
7

2.5. Grad-CAM

Grad-CAM [10] [11] is a visualization technique that
aids the explainability of decision making in Convolutional
Neural Networks. It allows us to view the regions of the im-
age the network is looking at for a particular predicted class
in the form of a heat map, utilizing the gradients for that
particular class in the last convolutional layer. An advan-
tage of using Grad-CAM is that it can be used to perform
visualizations on a variety of CNN models without archi-
tectural changes or re-training. This visualization is particu-
larly useful to analyze failures of these CNNs- to understand
the reasoning behind and diagnose incorrect predictions.

Since the last layer of CNNs retains spatial informa-
tion of the image and contains high-level semantics as well,
Grad-CAM uses gradients in this layer to assign importance
to neurons for a particular class for a chosen image. The
class-discriminative localization map for a class c is ob-
tained by first calculating the gradient of the class c’s score
yc (prior to applying softmax) with respect to the feature
map activations Ak, (where we apply k filters in the convo-
lutional layer) of a convolutional layer. The global average
pooling of these gradients over the width and height dimen-
sions gives the neuron importance weights αc

k:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(Z = u ∗ v = the dimensions of the feature maps)

These weights capture the importance of feature map
k for the class c are then used to calculate a weighted
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combination of the forward activation maps, followed
by ReLU (ReLU is applied as we are only interested in
features having a positive influence on the selected class c),
to obtain the heatmap Lc

Grad−CAM :

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k)

The heatmap produced has the same dimensions as the
feature maps. This heatmap can be upsampled to the input
image resolution using bilinear interpolation.

3. Experiments
We have used pre-trained classification models for both

MNIST and CIFAR-10 datasets. These pre-trained models
are attacked using FGSM, BIM, and DeepFool. We apply
these attacks on 100 samples each. We observe the change
in the images, and the Test Accuracy and Mean Confidence
of the models on these perturbed images. The pre-trained
models we have used are a CNN model for MNIST and
the DenseNet model[4] for CIFAR-10, the performance of
these models on benign images are shown in Table 1 and
Table 2 respectively. The performance of the model we have
trained on CIFAR-10 can be seen in Table 3.

Table 1. Performance Statistics of CNN Model on Benign MNIST
Examples

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
99.43% 99.39% 0.000563

Table 2. Performance Statistics of DenseNet Model on Benign
CIFAR-10 Examples

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
94.84% 92.15% 0.002619

Table 3. Performance Statistics of Trained Model on Benign
CIFAR-10 Examples

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
86.07% 83.85% 0.002243

3.1. FGSM Attack

We applied the FGSM attack on both pre-trained mod-
els, the attack was successful in dramatically reducing the
test accuracy of both models. However, FGSM is a one-shot
attack algorithm, the DeepFool and BIM attacks are able to
fool the model at a higher rate for the MNIST dataset. Since
FGSM uses a one-shot approach it’s evaluation time is low.
Figure 5 shows examples of FGSM applied on MNIST data

samples, Figure 6 shows the same for CIFAR-10 data sam-
ples. The perturbations are clearly visible in the MNIST
samples, but are not noticeable in the CIFAR-10 samples.
Table 4 and Table 5 show the statistics of the pretrained
models under the FGSM attack.

Table 6 shows how the model we trained performs on
adversarial samples generated on the DenseNet model. The
FGSM attack has poor transferability as is apparent from the
results. The time taken per sample is the same as DenseNet
because the evaluation is done together.

Figure 5. MNIST data under FGSM attack

Table 4. Performance Statistics of CNN Model on Adversarial
MNIST Examples generated using FGSM

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
54% 94.98% 0.004986

Table 5. Performance Statistics of DenseNet Model on Adversarial
CIFAR-10 Examples generated using FGSM

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
14% 96.9% 0.085511
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Figure 6. CIFAR-10 data under FGSM attack

Table 6. Performance Statistics of Trained Model on Adversarial
CIFAR-10 Examples generated using FGSM for DenseNet Model

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
67% 85.93% 0.085511

3.2. DeepFool Attack

We applied the DeepFool attack on both pretrained mod-
els, the attack was successful against both models. Deep-
Fool has a much higher success rate because the DeepFool
attack keeps going until it fools the model. The confidence
level is lower than seen in FGSM. Figure 7 shows exam-
ples of DeepFool applied on MNIST data samples, Figure
8 shows the same for CIFAR-10 data samples. The pertur-
bations are visible in the MNIST samples, but they appear
more realistic than the FGSM ones. DeepFool also takes
a lot more time per sample. Table 7 and Table 8 show the
statistics of the pretrained models under the DeepFool at-
tack.

Table 9 shows how the model we trained performs on
adversarial samples generated on the DenseNet model. The
DeepFool attack has poor transferability as is apparent from
the results. The success of the attack is limited to the model
it is attacking.

Figure 7. MNIST data under DeepFool attack

Figure 8. CIFAR-10 data under DeepFool attack

3.3. BIM Attack

We applied the BIM attack with 10 iterations on both
pretrained models, both models were able to achieve an ac-
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Table 7. Performance Statistics of CNN Model on Adversarial
MNIST Examples generated using DeepFool

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
0% 83.76% 0.222839

Table 8. Performance Statistics of DenseNet Model on Adversarial
CIFAR-10 Examples generated using DeepFool

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
0% 85.78% 2.575407

Table 9. Performance Statistics of Trained Model on Adversar-
ial CIFAR-10 Examples generated using DeepFool for DenseNet
Model

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
85% 96.04% 2.575407

curacy of just 8%. BIM iteratively applies FGSM and as a
result achieves better success. Figure 9 shows examples of
BIM applied on MNIST data samples for 3, 6 and 10 itera-
tions of the attack, Figure 10 shows the same for CIFAR-10
data samples. The perturbations become more pronounced
as the number of iterations increase. BIM takes more time
per sample than FGSM, but is faster than DeepFool. Table
10 and Table 11 show the statistics of the pretrained models
under the BIM attack.

Table 12 shows how the model we trained performs on
adversarial samples generated on the DenseNet model. The
BIM attack has worse transferability than the FGSM attack
as our model achieves higher accuracy on the BIM attacked
samples.

Figure 9. MNIST data under BIM attack

Figure 10. CIFAR10 data under BIM attack

Table 10. Performance Statistics of CNN Model on Adversarial
MNIST Examples generated using BIM

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
8% 99.84% 0.060513

Table 11. Performance Statistics of DenseNet Model on Adversar-
ial CIFAR-10 Examples generated using BIM

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
8% 98.85% 1.495455

Table 12. Performance Statistics of Trained Model on Adversarial
CIFAR-10 Examples generated using BIM for DenseNet Model

Test Accuracy Mean Confidence
Test Time Per

Sample (Seconds)
81% 85.72% 1.495455

3.4. GradCam on Adversarial Examples

GradCam visualization was applied on the original as
well as the adversarially attacked images to observe the
shifts in attention, if any. On the MNIST and CIFAR10
images, the model looked at almost similar regions to deter-
mine the class of the image. One of the main reasons for the
same is the size of the images in the CIFAR10 and MNIST
datasets, and hence, we used a model trained on ImageNet
to visualise the effect of the FGSM attack.

As shown in Figure 11, the attacked image made the
model look at different locations to determine the class of
the image. The added impurity (adversarial noise) shifts
the attention of the model to different regions of the image
explaining the misclassification. Further research into the
reasons and possible remedies for the same can potentially
be a future scope of this project.
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Figure 11. GradCam Visualizations on ImageNet

4. Conclusion

In this project, we studied and implemented three adver-
sarial attacks for image classification, namely the FGSM at-
tack, the DeepFool Attack and the BIM attack. The FGSM
attack is the fastest one, however, its success rate is the low-
est. DeepFool keeps attacking an image until it succeeds, as
a result, it has a 100% success rate on both our models. The
BIM is an iterative application of the FGSM attack with a
threshold, as we increase the number of iterations the attack
is increasingly successful and at the same time, the pertur-
bations become more pronounced. We also trained another
model on the CIFAR-10 dataset, we then tested the trans-
ferability of the adversarial examples. FGSM was the most
successful in fooling the new model, however, the model
still achieved high accuracy. Lastly, we used Grad-CAM
to visualise the change in the focus area of a DNN when it
evaluates an adversarial example.

Adversarial attacks is an active area of research, there are
several applications of adversarial attacks, for example, ad-
versarial attacks have been used in a constructive manner to
protect privacy. Researchers are trying to incorporate mea-
sures during the training to improve the robustness of their
models against adversarial attacks and at the same time, new
adversarial attacks are devised to beat these measures. This
back and forth leads to a continuous improvement in the
security of Deep Learning models.
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