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Abstract—Early diagnosis of retinal diseases is imperative to
preempt severe vision impairment and blindness. This paper
aimed to achieve high accuracy and generalization performance
in predicting retinal diseases. Deep Learning models have proven
to be extremely effective in solving convoluted problems in the
area of Image Processing. Moreover, ensemble learning yields
high generalization performance by reducing variance. Thus,
a synthesis of transfer, ensemble, and deep learning was used
in this paper to build an accurate and dependable model for
the retinal disease detection and classification task. An in-depth
analysis of the performance of widely used deep neural network
architectures was made to build the disease-classifier set. En-
semble learning strategies like bagging via k-fold cross-validation
and stacking of logistic regression models were adopted to create
a collection of models to be used to make ultimate dependable
predictions. Finally, the entire model was evaluated with the help
of Retinal Fundus Multi-Disease Image Dataset (RFMiD). The
results clearly demonstrated the power of exploiting the synergy
between deep learning and ensemble learning models and their
useful application in retinal disease detection and classification.

Index Terms—Deep Learning, Ensemble learning, Retinal
Image Analysis, multi-Disease classification, transfer learning

I. INTRODUCTION

The retina is the innermost, light-sensitive layer of our eyes,
which is extremely delicate and responsible for translating the
image of the visual world into electrical neural impulses to
the brain to create visual perception[1]. Any damage to the
retina has the potential to cause serious implications, diseases,
and disabilities such as vision impairment and temporary or
permanent loss of vision. According to the World Health
Organization (WHO), there are at least 2.2 billion people in
the world who have vision impairment and further in almost
half of these cases, vision impairment is yet to be addressed
or could have been avoided[2]. Hence, early detection and
diagnosis of ocular pathologies have become of paramount
importance to prevent retinal diseases, visual impairment, and
blindness.

Over the past years, computerized clinical decision support
systems (CDSS) have seen a rapid growth in their implemen-
tation to help clinicians in their complex decision-making[3].
Additionally, in recent years, the machine learning community
has grown exponentially and several sophisticated deep learn-
ing frameworks such as convolutional neural networks (CNN)
have been applied to detect a vast array of ophthalmological

diseases using image classification[4][5]. However, several of
these models are application-specific and lack the capabilities
to detect rare retinal diseases with reasonable accuracy.

The screening of the eye through visualization of the retina,
using the color fundus photos, presents a very unique oppor-
tunity to examine the systemic microcirculation in the retina
in a non-invasive way. Detailed clinical observations of the
retinal fundus features not only provides insightful information
about the eye disease but also have led to the identification of
early symptoms of diverse long-term diseases such as diabetes,
stroke, and hypertension[6].

In this project, we have developed a machine learning model
for automatic ocular disease classification of frequent diseases
and rare pathologies using the Retinal Fundus Multi-disease
Image Dataset (RFMiD) consisting of a total of 3200 fundus
images captured using three different fundus cameras with 28
conditions annotated through adjudicated consensus of two
senior retinal experts. There are several machine learning
pipelines which are currently used for image classification.
With the RFMiD dataset, we have studied, built, and developed
an ensemble model which implements different deep learning
models thus resulting in an ensemble that yields better results
than either of those state-of-the-art deep models could indi-
vidually.

The main aim was to expand on the work done by Dominic
et al., 2021 [7]. We have explored and built on top of their
existing machine learning pipeline which involves transfer
learning followed by ensemble learning (for multiple deep
learning models) and strived to improve upon it. Throughout
the course of this project, we got exposure to studying and
building upon the following machine learning principles:

• k-fold cross validation
• image augmentation
• multiple deep learning architectures such as ResNet152,

InceptionV3, DenseNet201, and EfficientNetB4
• ensemble learning principles such as bagging, stacking,

and boosting
• binary logistic regression for classification
Our ultimate goal was to experiment with different models,

and try to improve the existing model by fine-tuning different
parameters, and thus creating a novel machine learning model
to detect and classify ocular pathologies.



Section II presents the methodology we adapted to complete
the project successfully and Section III presents the results
we were able to produce. Next, Section IV discusses a few
of the key obstacles we faced and a brief overview on how
we overcame them, and Section V concludes our work and
discusses the future scope for this project. Lastly, Section VI
highlights the individual contributions of the team members
towards this project which is then followed by the References
section.

II. METHODOLOGY

Figure 1 shows the methodology implemented for the entire
project. The first step included procuring and cleaning the
RFMiD dataset. Next, as part of the data preprocessing step,
several techniques were implemented to create a clean and
workable dataset. Techniques used during this step include
image augmentation, up-sampling, cropping and padding, and
normalization. Next in the pipeline included building and
training twenty classification models and ten detection models.
Further, ensemble learning techniques such as bagging and
stacking were used in conjunction with stratified k-fold cross-
validation and logistic regression to create a total of 29 models.
Finally, the fully trained model was evaluated on the test
dataset using performance metrics such as AUROC (Area
Under Receiver Operating Characteristics) curves and mAP
(Mean Average Precision) values.

Fig. 1. Methodology used for the project

A. RFMiD Dataset

The RFMiD (Retinal Fundus Multi-disease Dataset) dataset,
which is publicly available data, was used for the training
and building the model for this project. The dataset consists
of 3200 images out of which 1920 images were used as the
training dataset. The images obtained from the RFMiD dataset
consisted of 46 classes each representing rare and challenging
diseases, which were thoroughly adjudicated by two senior
retinal experts. To train the model, 27 of the most significant
classes were used while the classes representing extremely
rare diseases were clubbed in the class - ’OTHER’. Hence,
the resulting training dataset consisted of 28 classes. Finally,
the model was evaluated using a test dataset which consisted
of 1280 images.

B. Data Preprocessing
To build a robust model and in general increase the data

variability, the project involved implementing several prepro-
cessing techniques.

First, image augmentation was applied to balance class
distribution and real-time augmentation to obtain unique im-
ages in each epoch. Techniques such as flipping, rotation,
and altering brightness, contrast, saturation, and hue were
implemented. Using these techniques the dataset was prepared
for image up-sampling.

Next, via image up-sampling, we ensured that each
class/label occurred for a minimum threshold value. In the
project, the threshold value was set to 100. Doing so, the
training images increased from 1920 to 3354.

Further, post image up-sampling, we also applied square
padding to avoid aspect ratio loss which might occur during
posterior sizing and cropping to ensure that the fundus was at
the center of the image. Both these techniques were applied
to all the images individually, and the resulting images from
these processes were further resized as per the requirements
of the model where they were used as inputs.

Finally, we implemented value intensity normalization on
the images before they were fed to the deep learning architec-
ture. The intensities were zero-centered via the Z-Score nor-
malization approach and to avoid data snooping, the training
and test datasets were separately normalized.

C. Deep Learning Architecture
In today’s world, in the domain of medical image classi-

fication, deep convolutional neural network models are un-
equivocally state-of-the-art. Our end-to-end pipeline combines
two types of image classification models. All these models
are pre-trained on the ImageNet dataset, followed by transfer
learning with most frozen layers except for the classification
head, combined with a fine-tuning method for unfrozen layers.
The models are as follows:

• Detector Models: The disease risk detectors for binary
classification into normal or abnormal images.

– DenseNet201: Connects each layer to every other
layer in a feed-forward fashion. Ensures strong gra-
dient flow in forward and backward propagation.

– EfficientNetB4: Constructed using Neural Architec-
ture Search and Auto ML to optimize accuracy and
efficiency (FLOPS). State of the art Top-1 and Top-5
accuracy on CIFAR-100 and others.

• Classifier Models: The disease label classifiers for multi-
label annotation of abnormal images.

– ResNet152: Made up of residual blocks which are
made up of skip connections. This variant is used as
a standard baseline for transfer learning.

– InceptionV3: Made up of inception modules that
consist of filter banks with all shapes. V3 optimizes
the filter bank to factorize the larger sized filters

– DenseNet201: Connects each layer to every other
layer in a feed-forward fashion. Ensures strong gra-
dient flow in forward and backward propagation.



– EfficientNetB4: Constructed using Neural Architec-
ture Search and Auto ML to optimize accuracy and
efficiency (FLOPS). State of the art Top-1 and Top-5
accuracy on CIFAR-100 and others.

D. Ensemble Learning Principles

1) Bagging: To improve the performance and accuracy of
the machine learning model, bagging is generally applied. It
is proven to be useful for the bias-variance tradeoff and helps
reduce the variance of the predicted model. Further, in our
case, it also helps us deal with high-dimensional data quite
efficiently.

As a bagging approach, stratified 5-fold cross-validation was
applied. By doing so, a large variety of models was created
by training them on different subsets of the training data. It
should be noted that the word stratified should be emphasized
as it ensured that each fold is representative of all the strata of
the data. Hence, the stratified approach ensures that each of the
28 classes is represented in each fold in the same proportion.

Through this approach, we not only achieved efficient use
of the training data but also avoided overfitting and increased
the reliability of the prediction. As a result of this approach,
20 disease label classifier models and 10 disease risk detector
models were created.

2) Stacking: Stacking is generally used as it helps us
choose the best model by combining the predictions from mul-
tiple machine learning models obtained on the same training
dataset. Further, it helps us in using the usefulness of multiple
models which are useful on the dataset in their unique ways.
Given the creation of 30 models and a comparatively small
dataset, stacking finds huge importance in this project.

For this project, at the end of the deep learning architecture,
a binary logistic regression algorithm was applied to each class
individually. Hence, the predictions obtained from all the 30
models were used in calculating the classification of each of
the 28 classes. As a result, 29 distinct models were built, 28
for each of the classes and one for the detection of any disease
in the image. In the end, individual class probabilities obtained
from the binary logistic regression models were concatenated
to build the final prediction.

It should be noted that all the logistic regression models
were trained using stratified 5-fold cross-validation to avoid
overfitting and training the models on the same images as
seen in the deep learning architecture.

III. RESULTS

A. Loss Curves

No signs of overfitting were observed for the classifiers as
well as the detector models as can be seen in Fig. 2. The
gray areas surrounding the fitting curves show the confidence
intervals. To reduce the complexity, the loss curves have been
averaged across all folds. During the training process, the
strategy of choosing the model with the best validation set
performance was used and resulted in powerful classifiers and
detectors.

Fig. 2. Loss Curve

B. ROC Curves

Figure 3 shows the ROC (Receiver Operating Characteris-
tics) curves for each of the model architectures which have
been macro-averaged. The TPR (True Positive Rate) which
is on the Y-Axis should preferably be more than FPR (False
Positive Rate) on the X-Axis, which is the case in all our
models. Ensembler makes the entire system near perfect based
on the curve and this will also be reflected by the evaluation
metrics in the following section.

C. Evaluation Metrics

We used AUROC (Area under ROC curve) and mAP (Mean
Average Precision) to evaluate our models and ensemble
performance. Both metrics were macro-averaged across cross-
validation folds and classes. The results are as follows:

Model Type Architecture AUROC mAP
Classifier DenseNet 201 0.971515 0.914628
Classifier EfficientNet B4 0.966678 0.908115
Classifier ResNet 152 0.969704 0.911869
Classifier Inception V3 0.921541 0.521429
Detector DenseNet 201 0.968519 0.991890
Detector EfficientNet B4 0.982201 0.996926

Ensembler Logistic Regression 0.999507 0.997512
TABLE I

EVALUATION METRICS TABLE

The pipeline for multiple disease detection showed a very
robust detection as well as classification performance. It also
displayed the ability to detect rare retinal image conditions.
While the classifier models individually were only able to
achieve an AUROC of approximately 0.97 and a mAP of 0.91,
the detectors showed extremely high predictive power of 0.98
AUROC and 0.99 mAP. Somehow, Inception V3 shows a poor
mAP of 0.52 and a slightly reduced 0.92 AUROC.

In general, it is a complex task to train a multi-label
classifier and detector especially with the main class imbalance
issue between the conditions revealed a hard challenge for
building a reliable model. The upsampling and usage of focal
loss for countering the heavy imbalance in the dataset made
a crucial contribution As expected from a robust model, all
of the labels were accurately detected including the ‘OTHER’
class. Overall, the applied ensemble learning system and its



Fig. 3. ROC

strategies concluded in a crucial performance improvement as
compared to the individual deep CNN models.

IV. OBSTACLES

During the course of the project, we faced several obstacles.
This section sheds some light on a few of the key obstacles
and the approaches taken to overcome them.

A. Data Procurement & Pre-processing

The original problem statement was first defined in a private
competition on Kaggle, and the training and test dataset were
not publicly available. Hence, we instead worked on the
publicly available RFMiD dataset.

B. Dimensionality Reduction

The publicly available RFMiD dataset was huge and it
contained 46 classes. Hence, we performed data cleaning
and dimensionality reduction, thereby reducing the number
of classes to 28 classes which represented 27 most signifi-
cant classes and one class representing sparsely represented
extremely rare diseases.

C. Time Complexity

Given the nature of the deep learning architecture and mod-
els involved in it, the entire training process was cumbersome
as it required a huge amount of time given the low computing
resources we possessed. As a result, we moved to GPU-
based training on Google Colab, which oftentimes resulted
in exceeding the daily limit of resource utilization.

V. CONCLUSIONS

In this project, we primarily created an automatic machine
learning classification and detection model for ocular patholo-
gies and rare diseases. We implemented a deep learning-based
architecture to detect and classify these diseases and exten-
sively applied several data pre-processing techniques such as
image augmentation, up-sampling, and normalization among
others to clean and prepare data for the deep learning pipeline.
Further, we explored the use of ensemble learning principles
of bagging and stacking. Via bagging, we applied stratified
5-fold cross-validation to facilitate learning by representing

each class in equal proportion, and via stacking and the
subsequent binary logistic regression model approach, we were
able to create a final trained model by using the predictions
obtained from several models thereby increasing the accuracy
and reliability of the trained model. This entire approach led
to a creation of a well-trained model which yielded good
results on the test dataset while preventing overfitting and data
snooping.

As a future scope, we believe that other sophisticated mod-
els could be used instead of the ones currently implemented
in the pipeline. During the project timeline, as a first step
towards that direction, we replaced the Inception V3 model
with the MobileNet V3 model [15] as the mAP value for
Inception V3 is 0.52, which can be observed from Table 1,
and has some scope of improvement. Built by Google AI using
Auto ML and Neural Architecture Search (NAS), it helps in
efficient hyperparameter tuning, thereby reducing the human
bias in the entire process. But due to the extensive computing
resources required in the process, we were unable to train the
model satisfactorily, under multiple hyperparameter settings,
and as a result we obtained even more sub-optimal results
when compared to the results obtained from the Inception V3
model.

Next, in the future we believe using more state-of-the-
art deep learning models, and data augmentation and up-
sampling techniques would yield better results. Lastly, we
believe training the model on more publicly available datasets
like Kaggle DR, IDRiD, Messidor or APTOS would make the
model more reliable, accurate, and robust.

VI. MEMBER CONTRIBUTIONS

1) Literature review and survey - Aaryan
2) Study of proposed framework - Amogh and Parima
3) Implementation of individual algorithms - Amogh
4) Definition of performance metrics - Parima
5) Data Pre-processing - Amogh and Aaryan
6) Ensemble Learning principles - Parima
7) Model training and implementation - Aaryan
8) Improvisation and fine-tuning - Amogh and Aaryan
9) Presentation and project report - Aaryan, Amogh, Parima
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